Prioritization of skeletal muscle growth for emergence from hibernation.
نویسندگان
چکیده
Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October-February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding.
منابع مشابه
Myostatin levels in skeletal muscle of hibernating ground squirrels.
Myostatin, a negative regulator of muscle mass, is elevated during disuse and starvation. Mammalian hibernation presents a unique scenario, where animals are hypocaloric and in torpor, but the extent of muscle protein loss is minimized. We hypothesized that myostatin expression, which is usually increased early in disuse and under hypocaloric conditions, could be suppressed in this unique model...
متن کاملImpaired Skeletal Muscle Regeneration in the Absence of Fibrosis during Hibernation in 13-Lined Ground Squirrels
Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes t...
متن کاملAvoidance of skeletal muscle atrophy in spontaneous and facultative hibernators.
Smooth and skeletal muscle changes were compared from overwintering white-tailed prairie dogs, spontaneous hibernators that undergo regular, low-temperature torpor bouts, and black-tailed prairie dogs, facultative hibernators that use sporadic, moderate-temperature torpor bouts. The objectives were to assess the abilities of these two species with dramatically different torpor patterns (1) to c...
متن کاملThe effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus.
Hibernation is a crucial strategy of winter survival used by many mammals. During hibernation, thirteen-lined ground squirrels, Ictidomys tridecemlineatus, cycle through a series of torpor bouts, each lasting more than a week, during which the animals are largely immobile. Previous hibernation studies have demonstrated that such natural models of skeletal muscle disuse cause limited or no chang...
متن کاملProteogenomic Analysis of a Hibernating Mammal Indicates Contribution of Skeletal Muscle Physiology to the Hibernation Phenotype.
Mammalian hibernation is a strategy employed by many species to survive fluctuations in resource availability and environmental conditions. Hibernating mammals endure conditions of dramatically depressed heart rate, body temperature, and oxygen consumption yet do not show the typical pathological response. Because of the high abundance and metabolic cost of skeletal muscle, not only must it adj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 2 شماره
صفحات -
تاریخ انتشار 2015